Numerical Solution of Eigenvalue Problems with Spectral Transformations
نویسنده
چکیده
Title of dissertation: NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS Fei Xue, Doctor of Philosophy, 2009 Dissertation directed by: Professor Howard C. Elman Department of Computer Science Institute for Advanced Computer Studies This thesis is concerned with inexact eigenvalue algorithms for solving large and sparse algebraic eigenvalue problems with spectral transformations. In many applications, if people are interested in a small number of interior eigenvalues, a spectral transformation is usually employed to map these eigenvalues to dominant ones of the transformed problem so that they can be easily captured. At each step of the eigenvalue algorithm (outer iteration), the matrix-vector product involving the transformed linear operator requires the solution of a linear system of equations, which is generally done by preconditioned iterative linear solvers inexactly if the matrices are very large. In this thesis, we study several efficient strategies to reduce the computational cost of preconditioned iterative solution (inner iteration) of the linear systems that arise when inexact Rayleigh quotient iteration, subspace iteration and implicitly restarted Arnoldi methods are used to solve eigenvalue problems with spectral transformations. We provide new insights into a special type of preconditioner with “tuning” that has been studied in the literature and propose new approaches to use tuning for solving the linear systems in this context. We also investigate other strategies specific to eigenvalue algorithms to further reduce the inner iteration counts. Numerical experiments and analysis show that these techniques lead to significant savings in computational cost without affecting the convergence of outer iterations to the desired eigenpairs. NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS
منابع مشابه
A numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملFixed - Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem
Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem by Heidi K. Thornquist Arnoldi’s method is often used to compute a few eigenvalues and eigenvectors of large, sparse matrices. When the eigenvalues of interest are not dominant or wellseparated, this method may suffer from slow convergence. Spectral transformations are a common acceleration techniqu...
متن کاملSpectral recycling strategies for the solution of nonlinear eigenproblems in thermoacoustics
In this work we consider the numerical solution of large nonlinear eigenvalue problems that arise in thermoacoustic simulations involved in the stability analysis of large combustion devices. We briefly introduce the physical modelling that leads to a nonlinear eigenvalue problem that is solved using a nonlinear fixed point iteration scheme. Each step of this nonlinear method requires the solut...
متن کامل